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ABSTRACT

We have calculated the electronic charge density for the
ground state of helium using the first order shielding approximation.

The results are disappointing.
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I. Introduction

1 . ,
C. Schwartz  has calculated the first order correction to the
, . . . , . 2
electronic charge density in the ground state of Helium-like ioms,
due to the interaction between the electrons. His result in atomic

units for an ion of nuclear charge Z is
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In the derivation of (1) only the coulomb interaction between

the electrons was treated as a perturbation. In the first order



shielding approximation4 one has as an additional perturbation the
effect of the difference between the actual nuclear charge Z and
an assumed nuclear charge ‘é . In particular if we are interested
in the expectation values of any operator W which does not depend

explicitly on 1 then if with 3 = T  one finds

Wy = W) + i W, () (3)

it is easy to show that in the first order shielding approximation

one will find

oWy = W (B) + lf W, (3) +(2-3) dW, 13)
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Following Dalgarno and Stewart one then determines ‘E so that the

first order correction vanishes:

Low3) 4 2=3)dW,(3) _ o (5)
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For our problem where W = & L SCr_3 ) #8212 ,
r, and £, being the electronic coordinates, this means that we

will choose a different value of -§ for each value of r




IT1. Calculational Procedure

Combining (1), (4) and (5) one finds the equation

Z2-35 = X < &(23) )
234-3

which is to be solved to yield § as a function of + for a

given Z . Since G is a "universal function" of y3Z 2¥7¥ ,

the procedure is quite simple. For a given value of y one evaluates

G . Then one uses (6) to determine § , whence one can determine

+ from

+ = ‘é/z_‘s 7

Unfortunately this procedure rums into difficulty because G
is singular at y = 3 5. Referring to Figure I, which is a graph
of G versus y , we could confine our attention to the "first
branch'" running from y=0 to y=3 , y=0 yielding r=0 and G=:E.

yielding t = o0 . However this seemed physically unsatisfactory

because, as one readily sees, this would mean that
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would be decreasing only as -3 as T o0 . On the other

hand the second branch clearly yields 3-—5 constant as r— oo -



Thus what we have chosen to do is to use the first branch for small
values of r and the second branch for large values of r , bridging

the discontinuity smoothly by eye.

III. Results and Discussion

The results for‘? (r) for Z = Z are shown in Figure II. The

points-are obtained in the way we have indicated while the smooth

.curve, represents the analytic interpolation formula
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The values of the Ai and {ég are given in Table I.

To get some idea of the accuracy of our results we have computed

the averages of some powers of + using (9) and defining
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The results, and their comparison with exact values and with values
derived using the first-order shielding approximation are given

in Table II. Clearly on all counts: theoretical (the singularity)
and practical (agreement with exact values)7, the results are

rather disappointing.




Footnotes and References
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A283, 194 (1965) have derived analogous results for the

state of He-like ions and for the ground state of Li-like ions.
Schwartz's paper contains a misprint. We have chosen to retain

Legt
the "L " on the 1:%bt hand side of equation (25) and to delete

2
the "2" in equation (21). Schwartz (Table I) does the reverse.
Incidentally, we have also rederived (1) using double perturbation

theory. (See J. O. Hirschfelder, W. Byers Brown, and S. T.

Epstein, Advances in Quantum Chemistry, edited by P. O. Lowdin

(Academic Press Inc., New York 1964) footnote 9a, page 291.

A. Dalgarno and A. L. Stewart, Proc; Roy. Soc. (London) A257,

534 (1960).

Another procedure one might use to determine 3 is to require
that a%%g::o (See W. A. Sanders and J. 0. Hirschfelder,

J. Chem. Phys; 42, 2904 (1965)). However, this involves
singularities at 2 ? r =3 j;q?; so we did not pursue it
further.

See Table I W. A. Sanders and J. O. Hirschfelder, Footnote 6

and references given there.

Unfortunately, an accurate graph of g does not seem to be
available in the literature, and an overall comparison might show
our approximation to be better than the numbers in Table II suggest.
For example, our ?CO) is identical to that given by the usual

shielding approximation and is quite accurate



TABLE I

1 2 3 4
.828 .52 .88 -.44
2.75 5.68 6.39 10.0




TABLE II
‘ . 6 , .6
<™ This Exact Shielding
Approx. Approx.
= 2 1.43 1.19 1.17
=1 1.01 .92 .93
= -1 1.57 1.69 1.69
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Fig. II



